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ABSTRACT Sodium overload of cardiac cells can accompany various pathologies and induce fatal cardiac arrhythmias. We
investigate effects of elevated intracellular sodium on the cardiac action potential (AP) and on intracellular calcium using the
Luo–Rudy model of a mammalian ventricular myocyte. The results are: 1) During rapid pacing, AP duration (APD) shortens in
two phases, a rapid phase without Na1 accumulation and a slower phase that depends on [Na1]i. 2) The rapid APD shortening
is due to incomplete deactivation (accumulation) of IKs. 3) The slow phase is due to increased repolarizing currents INaK and
reverse-mode INaCa, secondary to elevated [Na1]i. 4) Na1-overload slows the rate of AP depolarization, allowing time for
greater ICa(L) activation; it also enhances reverse-mode INaCa. The resulting increased Ca21 influx triggers a greater [Ca21]i
transient. 5) Reverse-mode INaCa alone can trigger Ca21 release in a voltage and [Na1]i-dependent manner. 6) During INaK

block, Na1 and Ca21 accumulate and APD shortens due to enhanced reverse-mode INaCa; contribution of IK(Na) to APD
shortening is negligible. By slowing AP depolarization (hence velocity) and shortening APD, Na1-overload acts to enhance
inducibility of reentrant arrhythmias. Shortened APD with elevated [Ca21]i (secondary to Na1-overload) also predisposes the
myocardium to arrhythmogenic delayed afterdepolarizations.

INTRODUCTION

Ion regulation and the maintenance of ion gradients across
the cell membrane are important for cell homeostasis. In
cardiac tissue, ionic imbalances can be the precursor to the
genesis of arrhythmias (Levi et al., 1997; Wier and Hess,
1984; Cranefield and Aronson, 1988), which may degener-
ate to fibrillation and sudden cardiac death. Abnormal ele-
vations of both intracellular sodium and calcium have been
observed in myocytes during conditions of metabolic com-
promise, including ischemia (van Echteld et al., 1991; Tani
and Neely, 1990) and digitalis toxicity (Levi, 1991; Harri-
son et al., 1992). Intracellular sodium can also accumulate
when inactivation of voltage-gated sodium channels is ab-
normal or incomplete, leading to a sustained inward current.
This can be due to modification of inactivation by drugs
(Brill and Wasserstrom, 1986), such as veratridine and
aconitine, or sodium channel mutation as occurs in the

LQT3-type of the long QT syndrome (Bennett et al., 1995;
Dumaine et al., 1996; Chandra et al., 1998; Nagatomo et al.,
1998; Clancy and Rudy, 1999). In addition, fast rates during
tachycardia and fibrillation also lead to intracellular sodium
accumulation. An understanding of how ionic imbalances
develop and how they affect the cardiac myocyte’s electri-
cal and mechanical properties may lead to the advancement
of clinical treatment or preventive strategies (Lu and de
Clerck, 1993; Haigney et al., 1994; Ravens and Himmel,
1999).

The sodium–potassium pump and the sodium–calcium
exchanger are two important ion-regulating transporters that
play a critical role in maintaining the ionic balance across a
cardiac myocyte’s membrane. In addition to this function,
the electrogenic nature of these transporters implies that
they also have a direct effect on membrane potential. Rapid
pacing and fast rates during tachyarrhythmias increase the
rates of Na1 and Ca21 influx to an extent whereby sodium-
potassium pump and sodium-calcium exchanger are unable
to restore the ionic concentrations to normal levels. Rapid
pacing has a positive inotropic effect (in healthy tissue) and
the relationship between stimulation frequency and contrac-
tility has been extensively documented (Cohen et al., 1982;
Wang et al., 1988). In experiments investigating cell elec-
trophysiology, measurements of membrane potential and
ion activity are attainable using microelectrodes and fluo-
rescence techniques. However, the underlying membrane
ionic currents and ion fluxes responsible for arrhythmogenic
action potential changes and changes in contractility cannot
be directly measured.

In this study, we use a detailed theoretical model of a
cardiac myocyte (Luo and Rudy, 1994a; Zeng et al., 1995;
Viswanathan et al., 1999) to investigate the effects of so-
dium overload on the cellular electrophysiologic behavior
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and on the calcium transient (the trigger of contraction). The
use of a comprehensive ionic-based model permits us to di-
rectly observe transmembrane currents and ion fluxes contin-
uously during the AP. This can be done in a controlled fashion
for different pacing rates and different imposed conditions of
sodium elevation. Special attention is given to the roles of
INaCa and INaK in ion regulation and their effects on AP
morphology. In addition, the contribution ofIK(Na) to AP
shortening during sodium overload is evaluated.

METHODS

Cell model

The theoretical Luo–Rudy (LRd) model of a mammalian ventricular
action potential (Luo and Rudy, 1994a; Zeng et al., 1995; Viswanathan et
al., 1999) (Fig. 1) provides the basis for the simulations in this study. The
model is based mostly on guinea pig experimental data; it includes mem-
brane ionic channel currents that are formulated mathematically using the
Hodgkin–Huxley approach and ionic pumps and exchangers. The model
also accounts for processes that regulate intracellular concentration
changes of Na1, K1, and Ca21. Intracellular processes represented in the
model include Ca21 uptake and Ca21 release by the SR and Ca21 buffering
by calmodulin and troponin (in the myoplasm) and calsequestrin (in the
SR). For the purpose of this study, the formulations ofINaK, INaCa, and the
CICR process are adjusted to cover the range of greatly elevated intracel-

lular Na1 and Ca21 (Appendix). In addition,IK(Na) is incorporated in the
model (see below).

Na1-activated K1 current, IK(Na)

It has been suggested thatIK(Na) may play a significant role in APD
shortening during conditions of elevated [Na1]i (Kameyama et al., 1984;
Levi et al., 1997; Veldkamp et al., 1994). To investigate this possibility, a
formulation forIK(Na) is incorporated into the LRd model.IK(Na) is modeled
as an outwardly rectifying (Luk and Carmeliet, 1990) time-independent
current with [Na1]i and voltage dependence (Kameyama et al., 1984;
Sanguinetti, 1990). It is highly selective (Wang et al., 1991) for K1 and has
a maximum conductance (g#K(Na)) of 0.12848 mS/cm2. Formulation of this
current is provided in the Appendix. The current–voltage (I–V ) relation-
ship of IK(Na) is shown in Fig. 2. It is linear within the physiological range
of membrane voltages, and the current is less than 0.05mA/mF for
concentrations of [Na1]i smaller than 10 mM.

Simulation protocols

For all simulations, unless otherwise specified, [K1]o 5 4.5 mM,
[Na1]o 5 140 mM, and [Ca21]o 5 1.8 mM. The cell remains at rest until
a steady state of intracellular ionic concentrations is achieved before the
application of the first stimulus. For simulations that involve [Na1]i clamp
protocols (where [Na1]i is set to a specific concentration), [Na1]i is
clamped to an assigned value just before application of the pacing stimulus.
A stimulus of280 mA/mF is applied for a duration of 0.5 ms. A discrete

FIGURE 1 Schematic diagram of the dynamic Luo–Rudy (LRd) mammalian ventricular cell model. The major ion transporters, the sodium–potassium
pump current,INaK and the sodium–calcium exchange current,INaCa, are highlighted, as well as the sodium-activated potassium current,IK(Na). Additional
currents of significance in this study:INa, fast sodium current;ICa(L), calcium current through L-type calcium channels;ICa(T), calcium current through
T-type calcium channels;IKr, fast component of the delayed rectifier potassium current;IKs, slow component of the delayed rectifier potassium current;
Ip(Ca), calcium pump in the sarcolemma;ICa,b, calcium background current;Iup, calcium uptake from the myoplasm to network sarcoplasmic reticulum
(NSR); Irel, calcium release from the junctional sarcoplasmic reticulum (JSR). For details see Luo and Rudy (1994a), Zeng et al. (1995), and Viswanathan
et al. (1999). The LRd model code can be downloaded from the research sectoin of http://www.CWRU.edu/med/CBRTC.
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time step of 1 ms is used in the computations except for the 20 ms after the
start of the pacing stimulus, when 2ms is used. APD is measured as the
interval between the time of dV/dtmax and 90% repolarization (APD90).

RESULTS

INaCa and INaK increase in magnitude with
increasing [Na1]i

An important step in investigating the effects of elevated
[Na1]i on the electrical and contractile properties of the
myocyte is to characterize its effect on processes that reg-
ulate ionic concentrations. Two important ion transporters
that are affected by alterations in [Na1]i areINaCaandINaK.

Due to the electrogenic nature of these transporters, alter-
ations of their function can have a direct affect on AP
morphology. In Fig. 3,I–V relationships of these two trans-
porters are shown for varying [Na1]i.

The I–V relationship forINaCa (Fig. 3A) closely dupli-
cates the experimental findings of Matsuoka and Hilgemann
(1992). Several properties ofINaCa are demonstrated, in-
cluding saturation of the current with increasing voltage and
increasing [Na1]i (inset), and a shift of the reversal potential
to more hyperpolarized potentials with increasing [Na1]i.
This shift implies thatINaCa operates in its reverse mode
(bringing in Ca21 and extruding Na1 with 1:3 stoichiome-
try, generating a repolarizing current) for a longer duration
during the AP, shifting the balance in favor of Ca21 loading.
The model simulates the experimental behavior, including
the “jump” in current magnitude between 10 and 20 mM
[Na1]i (arrow) and the saturation at high voltage
and [Na1]i.

The I-V relationship forINaK (Fig. 3B) duplicates quite
well the experimental findings of Nakao and Gadsby
(1989). Of importance is the increase in current magnitude
due to both an increase in voltage and an increase in [Na1]i.

Ion accumulation during pacing

During pacing, ions accumulate within the cell and intra-
cellular ionic concentrations, specifically [Na1]i and
[Ca21]i, differ greatly from those of the quiescent myocyte.
The relationship between ionic concentrations and pacing

FIGURE 2 Current–voltage relationship ofIK(Na), the Na1-activated K1

current. Current–voltage relationships are shown for 5 mM (f), 10 mM
(F), 15 mM (Œ), and 20 mM (l) [Na1]i. All curves are obtained with 132
mM [K1]i and 4.5 mM [K1]o.

FIGURE 3 Current–voltage relationships forINaCa

andINaK as a function of [Na1]i. (A) Simulated (top) and
experimentally measured (bottom, adapted from Mat-
suoka and Hilgemann, 1992)INaCaI–V relationships for
5 mM (‚), 10 mM (f), 20 mM (M), 30 mM (�), and 40
mM (ƒ) [Na1]i, obtained with 1mM [Ca21]i, 2 mM
[Ca21]o, and 150 mM [Na1]o. The insets showINaCa

magnitude versus [Na1]i, measured at 20 mV, demon-
strating saturation of the current with increasing [Na1]i.
(B) Simulated (top) and experimentally measured (bot-
tom, adapted from Nakao and Gadsby, 1989)INaK I–V
relationships for 3 mM (F), 8 mM (f), and 50 mM (Œ)
[Na1]i, obtained with 5.4 [K1]o, 140 [K1]i, and 145
mM [Na1]o.
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frequency can be represented in the form of a concentration-
frequency staircase. Experiments conducted by Wang et al.
(1988) (Fig. 4B) demonstrate that both intracellular Nai

1-
activity (aNa

i , a measure of [Na1]i) and twitch force (a
measure of [Ca21]i) increase with increasing frequency and
decrease with decreasing frequency. In Fig. 4A, the theo-
retical simulation closely reproduces the experimental re-
sults. The panels to the right of the staircases contain
simulated (top) and measured (bottom) APs at the various
pacing frequencies increasing froma to g. Note that APD
shortens as pacing frequency increases and ion accumula-
tion occurs.

An adaptation curve is shown in Fig. 5, summarizing the
relationship between APD and pacing frequency. Steady-
state APD is approximately 185 ms for cycle lengths.2000
ms and decreases to;65 ms at a cycle length of 100 ms.
[Na1]i and peak intracellular Ca21 concentration
([Ca21]i,max) at the corresponding cycle lengths are also
plotted, showing the concomitant rise of Na1 and Ca21 as
cycle length decreases. The accumulation of these intracel-
lular ions is due to the inability of the Na1–K1 pump and
the Na1–Ca21 exchanger to balance the rate of ion entry.
The rise in these intracellular ions affects several Na1- and
Ca21-dependent currents, which results in the shortening of

APD and other changes in the cells’ electrophysiologic
properties as investigated below.

The role of IKs and [Na1]i in APD shortening

The accumulation of intracellular ions is not the primary
cause of APD adaptation, as is demonstrated in Fig. 6,
where [Na1]i is plotted versus APD for two different cycle
lengths (BCL5 300 and 1000 ms). The cells are paced from
rest, and reach a steady state after approximately 5 min. The
beat number gives an indication of the rate of [Na1]i accu-
mulation, which occurs rapidly at first and then slows as the
cell approaches steady state. For both BCLs, two phases of
APD shortening are observed, a rapid phase with no signif-
icant change in [Na1]i, and a much slower phase with strong
[Na1]i dependence. For a BCL of 300 ms, the rapid short-
ening of APD occurs within the first 5–10 beats, resulting in
a change in APD from 190 to 130 ms. The cause of this
rapid shortening is accumulation (incomplete deactivation
and residual activation) of the slow delayed rectifier K1

current,IKs. The first five action potentials and the corre-
spondingIKs current are shown in the inset of Fig. 6. At this
cycle length,IKs does not have sufficient time to completely

FIGURE 4 [Na1]i and [Ca21]i as a function of pacing frequency. (A) Simulated concentration-frequency staircase, showing changes of [Na1]i and
[Ca21]i during a staircase protocol where frequency is stepped from 0.5 to 1 Hz and then to 6 Hz in increments of 1 Hz (5 min. at each pacing frequency).
After 10 min. of pacing at 6 Hz, frequency is stepped down in reverse order. (B) The corresponding experiment showing measured intracellular sodium
activity (aNa

i ) and twitch force for the same protocol (Wang et al., 1988). Both simulation and experiment were conducted using 5.4 mM [K1]o, 1.8 mM
[Ca21]o, and 137 mM [Na1]o. To the right of (A) and (B), the corresponding computed and measured action potentials at times a–g are shown.
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deactivate between beats. This results in an instantaneous
jump in the current when the next stimulus is applied. The
resulting greater repolarizing current acts to shorten APD.
Beyond these initial beats, the magnitude of the instanta-
neous current does not increase, but APD continues to
shorten. This is due to the gradual rise in [Na1]i. The slow
accumulation of [Na1]i alters the behavior of several Na1-
dependent currents resulting in the continued shortening. At
the time when steady state is reached, [Na1]i is responsible
for ;20% of the total APD shortening, whereasIKs accu-
mulation is responsible for;80%. At a BCL of 1000 ms,
which is more typical of human heart rate,IKs has a longer
recovery time between beats, thus there is less accumulation of
the current. In this case, accumulation of [Na1]i is responsible
for more than 50% of the total APD shortening. The mecha-
nism of Na1-dependant APD shortening is studied below.

Effects of [Na1]i on ionic currents, action
potential, and [Ca21]i

To characterize the effect of elevated [Na1]i on the AP
and its underlying ionic currents, APs generated by a cell
under conditions that differ only in [Na1]i are presented in
Fig. 7. The initial conditions for the two action potentials
are identical (steady-state values of a quiescent cell with
[Na1]i 5 10 mM) and [Na1]i is clamped to an assigned
value (10 mM or 20 mM) just before the stimulus (only one
stimulus is applied). This allows examination of effects that
can be attributed specifically to [Na1]i. Observed changes
to the AP due to elevated [Na1]i include reduced maximum
voltage, reduced plateau potential, and shortened APD. In
addition to these changes in membrane voltage, there is
greater release of Ca21 from the SR.

FIGURE 5 APD adaptation curve. The figure shows
the steady-state relationship (achieved after 5 min. of
pacing) between cycle length and APD (f) as generated
by the LRd model. Corresponding changes in
[Ca21]i,max (Œ) and [Na1]i (E) are also shown.

FIGURE 6 The role of [Na1]i and IKs in APD short-
ening during pacing. Figure shows the relationship be-
tween [Na1]i and APD for two different cycle lengths
(BCL 5 300 ms and BCL5 1000 ms). The cell is paced
from rest for 5 min (1000 beats for a BCL of 300 ms and
300 beats for a BCL of 1000 ms) while simultaneous
measurements of [Na1]i and APD are made. Beat num-
bers are indicated to the right of each curve. For a BCL
of 300 ms, the important mechanisms responsible for
APD shortening are indicated beneath the curve, where
IKs accumulation is responsible for approximately 80%
of the total shortening and Nai

1 accumulation is respon-
sible for 20%. For BCL of 1000 ms, Nai

1 accumulation
is responsible for more than 50% of the total shortening.
The inset shows the first five action potentials and the
correspondingIKs current recorded at BCL of 300 ms.
Rapid shortening of APD occurs within the first 5 beats
due an increase in the instantaneousIKs current (indi-
cated by the arrows) caused by incomplete deactivation
of IKs between beats.
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The currents that are directly affected by the rise in
[Na1]i are INa, INaCa, INaK, andIK(Na). The role ofIK(Na) is
explored in the next section in the context ofINaK block.
With [Na1]i accumulation, the reduction in the driving force
decreasesINa, thereby reducing the rate of AP upstroke
(dV/dtmax) and theVmax (Fig. 7A). Similarly, the elevated
[Na1]i drives INaCaand INaK in the outward direction (Fig.
7, D and G) providing significantly greater repolarizing
current during the early stages and throughout the AP,
which results in a reduced plateau potential and shortened
APD (Fig. 7A). Although IKr (the rapid delayed rectifier)
shows no significant change (Fig. 7F), the reduced AP
plateau potential slowsIKs activation and decreases the
driving force for K1, resulting in a greatly reducedIKs (Fig.
7 E). SmallerIKs is typically associated with APD prolon-
gation, but enhancedINaCaand INaK more than compensate
for this loss of repolarizing current. The “paradoxical” APD
shortening with reducedIKs demonstrates the delicate bal-
ance of currents that determine the AP plateau and duration.

Elevated [Na1]i is accompanied by a large [Ca21]i tran-
sient as a result of greater Ca21 entry that triggers Ca21

release from the SR through the CICR process (Fig. 7B,
dashed curve). It is important to note that the increased
[Ca21]i transient is not due to larger Ca21 stores within the
SR because both cells in this simulation have identical
initial conditions, including [Ca21]i values. Therefore, the

difference in the [Ca21]i transient is secondary to the dif-
ference in [Na1]i that is imposed (clamped) before the
pacing stimulus. Two sources of Ca21 entry that signifi-
cantly contribute to triggering SR release are the L-type
Ca21 channels and reverse-mode Na1–Ca21 exchanger. As
can be seen in Fig. 7,C and D, the current through these
channels is significantly increased at the elevated [Na1]i

case before Ca21 release. The slowed action potential up-
stroke due to the decreasedINa increases the activation time
for ICa(L). Also, as a consequence of the bell-shapedI–V
relationship ofICa(L) (maximum at;10 mV, see Fig. 10) the
reduced AP voltage enhances the current. The reduced AP
voltage is also further away from the Ca21 reversal poten-
tial, which increases the driving force for Ca21. The com-
bination of increased channel conductance and driving force
results in an increased early phase ofICa(L). During the
plateau,ICa(L) is of similar magnitude for the two [Na1]i

levels because the greater [Ca21]i transient at elevated
[Na1]i reduces the current through Ca21-dependant inacti-
vation, compensating for the increase in driving force.

A summary of the [Na1]i-dependent changes in AP mor-
phology and [Ca21]i is presented in Fig. 8. The solid curves
show the isolated effects of [Na1]i increase ([Na1]i is
clamped to an assigned value just before application of a
single stimulus, all other parameters are at resting steady-
state values). With increasing [Na1]i, Vmax decreases, APD
shortens, dV/dtmax decreases, and [Ca21]i,max increases.
Specifically, a 100% increase in [Na1]i from 10 to 20 mM
results in a decrease ofVmax by 22%, a shortening of APD

FIGURE 7 Isolated effect of elevated [Na1]i on the action potential. The
figure shows the action potential (AP), calcium transient ([Ca21]i), ICa(L),
INaCa, IKs, IKr, and INaK for two different concentrations of intracellular
Na1, [Na1]i 5 10 mM (solid lines) and [Na1]i 5 20 mM (dashed lines).
For the curve ofICa(L) (Panel C), the arrow indicates the peak of the current
for [Na1]i 5 10 mM.

FIGURE 8 [Na1]i-dependent changes of action potential morphology
and of peak [Ca21]i. Changes in peak membrane voltage (Vmax), action
potential duration (APD), maximum rate of rise of the action potential
upstroke (dV/dtmax), and peak calcium transient ([Ca21]i,max) are shown for
two different experimental protocols. The solid curves show the isolated
effect of [Na1]i changes ([Na1]i is clamped to an assigned value just
before a single stimulus; same protocol as Fig. 7). The dashed curves show
values computed after 5 min. of pacing at various cycle lengths, allowing
all concentrations to vary (same protocol as in Fig. 5).

AP Changes in [Na1]i Overloaded Myocytes 2397

Biophysical Journal 78(5) 2392–2404



by 35%, a decrease in dV/dtmax by 21%, and an increase in
[Ca21]i,max by 46%.

The dashed curves in Fig. 8 are values computed using
the same protocol as in Fig. 5, where the cell is paced from
rest for 5 min, and all parameters and concentrations are free
to change during pacing. Comparison between the paced
myocyte and the [Na1]i clamped myocyte subject to a
single stimulus (solid curves) helps to determine the differ-
ences that occur when more than just [Na1]i is allowed to
change. Perhaps the most significant difference is the dra-
matic increase in [Ca21]i,max. During pacing, [Na1]i and
[Ca21]i rise simultaneously, and the increased [Ca21]i tran-
sient is a result of both increased Ca21 loading and in-
creased triggering of release due to increasedINaCa and
ICa(L) as discussed earlier. The more significant APD short-
ening observed in the paced cell is due to accumulation of
IKs at faster pacing rates. Finally, the steep decrease ofVmax

and dV/dtmax for the paced cell is due to incomplete recov-
ery of INa at very rapid rates.

[Na1]i-overload generated by Na1–K1 pump
block and its ramifications

The use of Na1–K1 pump blockers, such as digitalis and
strophanthidin, is a common treatment for relief of symp-

toms of heart failure (for review, see Smith et al., 1984).
The mechanism by which pump blockers restore contractil-
ity begins with an elevation of [Na1]i resulting from the loss
of Na1–K1 pump function. This rise in [Na1]i increases
reverse-mode Na1–Ca21 exchange resulting in a rise of
[Ca21]i, which augments contraction and enhances cardiac
function. In Fig. 9A, the simulated condition of Na1–K1

pump block (90% reduction ofINaK) is compared to exper-
imental data from guinea pig myocytes during strophanthi-
din application (Levi, 1991). The simulated behavior of
APD and [Ca21]i corresponds well to that observed exper-
imentally. [Na1]i and INaCa (not measured in the experi-
ments) are also shown in the figure. Following the block of
the Na1–K1 pump, [Na1]i and [Ca21]i begin to rise. The
initial brief lengthening of APD is due to the loss of the
repolarizing Na1–K1 pump current. As [Na1]i accumu-
lates, reverse-mode (repolarizing) Na1–Ca21 exchange cur-
rent is increased, shortening APD. The enhanced reverse-
mode INaCa contributes to the rise in [Ca21]i. During
washout (simulated as a gradual removal of the pump block)
the restored Na1–K1 pump current results in a period of
continued APD shortening until a significant amount of
[Na1]i is removed, decreasingINaCaandINaK with a gradual
prolongation of APD to its preblock value.

FIGURE 9 The effect ofINaK block on APD; Role ofINaCaandIK(Na) in APD shortening. (A) Simulated effect ofINaK block on APD, [Ca21]i, [Na1]i,
and peak outward (reverse-mode)INaCa. On the right are corresponding experimental recordings made by Levi (1991) in a guinea pig ventricular myocyte,
showing changes in APD and active shortening following the application of theINaK blocker strophanthidin (the stimulation was temporarily subthreshold,
where the recorded APD is zero). For both the simulated and measured data, cells are paced at a cycle length of 1000 ms using 5.4 mM [K1]o, 1.5 mM
[Ca21]o, and 130 mM [Na1]o. The Na1-activated K1 current (IK(Na)) is included in this simulation. (B) The role ofINaCa and IK(Na) in APD shortening
following INaK block. The solid curves show action potentials computed at times a, b, and c, indicated by the arrows in (A). The dashed curves show action
potentials computed at time c, but withIK(Na) subjected to [Na1]i as at time b (APD recovers by only 4 ms), or withINaCasubjected to [Na1]i as at time
b (APD recovers by approximately 35 ms, almost to the original APD at time b).
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In addition to APD shortening due to an increase in
reverse-modeINaCa, it has been hypothesized that the Na1-
activated K1 current may play a significant role in APD
shortening during conditions of Na1–K1 pump block (Ka-
meyama et al., 1984). Its contribution is explored in Fig.
9 B, where APs computed at times a, b, and c of Fig. 9A are
shown (solid curves). The dashed curves are APs computed
at time c ([Na1]i ' 15 mM) with either IK(Na) or INaCa

reduced to their values at time b ([Na1]i ' 9.2 mM). As can
be seen,INaCaaccounts for almost the entire APD shorten-
ing between b and c, with minimal contribution fromIK(Na).
In Fig. 2, for [Na1]i 5 15 mM and a membrane potential of
40 mV (a typical maximum voltage during an action poten-
tial), the peakIK(Na) current is approximately 0.15mA/mF.
Due to the linearI–V relationship ofIK(Na) and its time
independence, the morphology of the current during an
action potential follows that of the membrane voltage. In
Fig. 9, for the AP computed at time c ([Na1]i ' 15 mM),
the peakIK(Na) current is 0.17mA/mF, which is less than
18% of peakIKr and less than 15% of peakIKs.

Contribution of reverse-mode INaCa to triggering
SR Ca21 release

The role of reverse-modeINaCa in triggering SR Ca21

release is controversial, with conflicting experimental evi-
dence for and against its ability to do so. In the previous
simulations, CICR considered Ca21 entry via bothINaCaand
ICa(L) as a trigger for Ca21 release from the SR. In Fig. 10,
A and B, we investigate the individual roles ofICa(L) and
INaCa in triggering Ca21 release and compare it with the

release elicited when these two currents act together. In Fig.
10A, where [Na1]i 5 10 mM, peak [Ca21]i transient, when
only ICa(L) serves as a trigger (M), closely follows the
bell-shapedI–V relationship ofICa(L) (✖) as expected. A
similar behavior is also observed when bothICa(L) andINaCa

contribute Ca21 to trigger release (F). INaCa alone, in the
presence of 100%ICa(L) block, is able to trigger Ca21

release from the SR (E). However, the resulting [Ca21]i,max

is small compared to that elicited byICa(L) over most of the
potential range shown (the relativeINaCacontribution is 8%
at V 5 0 mV and 25% atV 5 40 mV). In Fig. 10B, where
[Na1]i 5 20 mM, [Ca21]i,max elicited by ICa(L) alone (M)
once again closely follows theICa(L) I–V relationship (✖).
However, whenICa(L) and INaCa both contribute Ca21 to
trigger release (F), the peak [Ca21]i transient deviates from
the ICa(L) I–V curve, especially for voltage steps to poten-
tials greater than 20 mV. This observation, which is in
agreement with results observed experimentally by several
investigators (Nuss and Houser, 1992; Levi et al., 1994;
Kohomoto et al., 1994; Litwin and Bridge, 1997), provides
evidence for the exchanger’s participation in the triggering
of SR release in a voltage- and [Na1]i-dependent manner.

The results of Fig. 10A cannot be readily extrapolated to
the exchanger’s role in triggering release during the AP at
physiological [Na1]i. In Fig. 11 I, ([Na1]i 5 10 mM),
computed APs, and corresponding [Ca21]i transients are

FIGURE 10 (A and B) Relationship between Ca21 entry and Peak
[Ca21]i for two different concentrations of [Na1]i. (A) ([Na1]i 5 10 mM)
and (B) ([Na1]i 5 20 mM) peakICa(L) (✖; shown with reversed polarity)
are shown together with three different [Ca21]i,max curves. These
[Ca21]i,max curves are generated by three different modes of SR triggering:
Ca21 entering through any mechanism contributes to triggering SR Ca21

release (F), only Ca21 carried byICa(L) contributes (M), and only Ca21

carried by reverse-modeINaCa contributes (E). The dashed line indicates
resting [Ca21]i.

FIGURE 11 Contribution ofICa(L) and INaCato Ca21 release during the
action potential. Action potentials and their corresponding Ca21 transients
are shown for (A) control conditions, (B) conditions ofICa(L) block, and (C)
both ICa(L) andINaCablock. Channel block is applied just before stimulus,
ensuring equal SR loading.Panel Ishows results for physiologic [Na1]i 5
10 mM. Panel II shows results for elevated [Na1]i 5 20 mM (sodium
overload).
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shown for three different protocols: (A) control, bothICa(L)

and INaCa contribute to signaling release; (B)ICa(L) is
blocked andINaCa is the primary contributor to signaling
release; (C) bothICa(L) and INaCa are blocked. In (B), the
[Ca21]i transient elicited byINaCatriggering alone is 25% of
control. In (C), there is a small residual [Ca21]i transient
(only 2% of control) triggered by Ca21 entry via T-type
Ca21 channels and background Ca21 current. Note that the
exchanger’s contribution during the AP is consistent with its
contribution during a square pulse to140 mV (Fig. 10A),
a potential similar to the peak potential of the AP. Fig. 11 II
shows computed APs and corresponding [Ca21]i transients
for the same protocols as Fig. 11 I, but for [Na1]i 5 20 mM.
In this case, the [Ca21]i transient elicited byINaCatriggering
alone (panel B) is 33% of the control.

DISCUSSION

There are several important findings of this study: 1)
[Na1]i accumulation at rapid heart rates plays an important
role in APD shortening (in addition to the well-established
role of IKs); the Na1-dependent shortening is a result of
increased outwardINaCa and INaK. 2) APD shortening re-
sulting from [Na1]i overload alone (in the absence of rapid
pacing) occurs despite a reducedIKs (which acts to prolong
APD). 3) IK(Na) contributes little to APD shortening, even
during conditions of elevated [Na1]i. 4) Ca21 entry via both
INaCaandICa(L) increases with increasing [Na1]i, triggering
a larger [Ca21]i transient; at higher [Na1]i, reverse-mode
INaCaalone can trigger Ca21 release from the SR. 5) During
INaK block, both intracellular Na1 and Ca21 accumulate,
and APD shortens due to enhanced outwardINaCa.

Elevated [Na1]i plays an important role in
APD shortening

It is common knowledge that rapid pacing results in
shortening of APD. The ability of the myocyte to adapt its
APD in response to changes in pacing frequency is primar-
ily due to accumulation of theIKs resulting from incomplete
deactivation between beats. However, we have shown that
accumulation of intracellular sodium also plays an impor-
tant role. The time course of these two processes is quite
different. APD shortening due toIKs accumulation occurs
within a few beats, whereas APD shortening due to accu-
mulation of [Na1]i occurs over a period of minutes. [Na1]i

accumulates due to the inability of the Na1–K1 pump to
remove Nai

1 at a rate that is sufficient to compensate for the
increased Na1 entry during fast pacing.

An increase in [Na1]i results in an increase ofINaK and
reverse-modeINaCa(Fig. 3), both of which are repolarizing
currents. Their influence on membrane potential becomes
substantial under these conditions, resulting in a shortening
of APD. For the protocol shown in Fig. 7,INaK and reverse

INaCaaccount for approximately 28% of the total repolariz-
ing current when [Na1]i 5 10 mM and for 52% when
[Na1]i 5 20 mM. Note that both currents are of large
outward magnitude at the initial phase of the AP. This acts
to reduce the AP and plateau potential, which, in turn,
accelerates repolarization.

IK(Na) contribution to APD shortening is negligible

The simulations show thatIK(Na) is activated during so-
dium overload (e.g., due to compromisedINaK) and acts to
shorten APD. However, its quantitative effect on APD is
minimal even when [Na1]i is greatly elevated to 16 mM.
The physiological function ofIK(Na) remains unclear. One
possibility is that the channel plays an important role in
other cell types or species, but is a vestigial channel in the
guinea pig ventricular myocyte. Another possibility is that
[Na1]i can reach values much higher than commonly be-
lieved. Using atomic absorption spectroscopy, Radford et
al. (1998) measured [Na1]i greater than 30 mM in guinea
pig myocytes. These concentrations are supported by Na1-
sensitive microelectrodes recordings (Ellis, 1977), but only
if an activity coefficient of 0.2 is used for convertingaNa

i to
[Na1]i rather than the commonly accepted value of 0.75.
Based on our simulations, for concentrations of intracellular
Na1 greater than 30 mM,IK(Na) is significantly activated
and generates a current similar in magnitude toIKr or IKs.
Although whole cell concentrations of this magnitude seem
unlikely, it is possible that such concentrations are achieved
in a restricted subsarcolemmal space, as has been suggested
by several studies (for review, see Carmeliet, 1992). Using
electron probe microanalysis, Wendt-Gallitelli et al. (1993)
measured a large rise in subsarcolemmal sodium
([Na1]subsarcolemmal5 406 7 mM) following a rapid pacing
protocol, and were able to observe the opening of Na1-
activated K1 channels in these areas of high Na1. Important
information about subsarcolemmal spaces must be obtained
before a better understanding of the function of ion-regu-
lated transporters and channels, includingIK(Na), can be
achieved. Such information includes the location and dis-
tribution of membrane ion channels relative to the subsar-
colemmal spaces, the surface area of membrane exposed to
these spaces, subsarcolemmal volumes, ion concentrations
in these volumes, and ion diffusion rates from these re-
stricted spaces to the bulk myoplasm.

Ca21-entry through INaCa and its role in CICR

The Na1–Ca21 exchanger plays a critical role in the
Ca21-handling processes of the cell. It helps to maintain low
levels of resting [Ca21]i and keeps a steady-state balance of
[Ca21]i by removing Ca21 that entered the myocyte through
voltage-gated Ca21 channels during the course of the AP. A
more debated contribution of the Na1–Ca21 exchanger to
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Ca21 cycling is its role in the CICR process.ICa(L) provides
the primary source of Ca21, which signals the opening of
ryanodine receptors on the SR membrane. Once opened, the
SR releases its Ca21 store, resulting in a 10-fold increase in
[Ca21]i from 0.1 to 1mM, which triggers contraction. The
exchanger’s ability to contribute to the signaling of SR
Ca21 release was first suggested and shown in the late
1980s (Berlin et al., 1987; Bers et al., 1988; Leblanc and
Hume, 1990) and has since been extensively investigated.

Membrane structure plays in important role in the exci-
tation–contraction process. Using immunofluorescence lo-
calization, Gao et al. (1997) have shown that L-type channel
proteins are present with greatest density in the t-tubules in
close proximity to SR release sites, reaffirming their impor-
tant role in excitation–contraction coupling. This technique
has also provided evidence for the importance of the Na1–
Ca21 exchanger in CICR. Immunofluorescence of the Na1–
Ca21 exchange protein (Frank et al., 1992; Kieval et al.,
1992) has shown that these proteins are also present with
greatest density within the t-tubules. It is possible that their
localization to the t-tubules is not because of a functional
role in CICR, but for efficient removal of Ca21 from the
high-concentration restricted space. Even so, several inves-
tigators have provided evidence suggesting thatINaCaplays
an important role in triggering Ca21 release from the SR
during CICR.

Perhaps the most persuasive evidence is experiments
showing deviation of cell contraction from theICa(L) I–V
relationship (Levi et al., 1994; Kohomoto et al., 1994;
Litwin et al., 1996). As shown in Fig. 10, theICa(L) I–V
relationship is bell-shaped with maximum current around 10
mV. For the case of elevated [Na1]i (Fig. 10B, [Na1]i 5 20
mM), the [Ca21]i,max, F deviates significantly from this
relationship for voltages.20 mV. This is due to increased
Ca21 entry via reverse-modeINaCa, which participates in
CICR to trigger greater SR release. For normal physiolog-
ical [Na1]i of 10 mM (Fig. 10A), the [Ca21]i,max curve
follows closely theICa(L) curve, but deviates from it starting
at V 5 40 mV, indicating a contribution fromINaCafor V .
40 mV. Because the peak AP is in this voltage range, one
expects a contribution fromINaCato triggering release dur-
ing an AP for normal [Na1]i. This hypothesis is confirmed
by the simulation in Fig. 11 I, whereINaCaalone triggers a
Ca21 transient with magnitude 25% of control. As expected,
the role ofINaCaincreases as [Na1]i increases, contributing
33% to triggering release at [Na1]i 5 20 mM (Fig. 11 II).
The results of these simulations are consistent with exper-
iments that demonstrate an attenuated contraction when
ICa(L) is blocked and absence of contraction when bothICa(L)

and INaCa are blocked (Levi, 1993; Levesque et al., 1994).
Recent experiments at physiological [Na1]i (Vornanen et

al., 1994; Litwin et al., 1998; Wasserstrom and Vites, 1999)
demonstrated greater deviation of cell shortening (or ten-
sion) from the bell-shapedICa(L) curve than the simulation
in Fig. 10A. These quantitative differences might reflect

differences in details of the protocols. They could also
be due to voltage-activated Ca21 release (Ferrier and
Howlett, 1995), a suggested mechanism that is not included
in the LRd model andrequires further experimental study and
characterization.

One of the interesting mechanistic findings of this study
is that the initial spike ofICa(L) increases with increasing
[Na1]i (Fig. 7C). It is this early entry of Ca21 that signals
the release of Ca21 from the SR. Therefore, augmentation
of early ICa(L) is an important contributor to the increased
[Ca21]i transients observed with increased [Na1]i. The
cause for the increase in earlyICa(L) is longer activation time
of the current resulting from the slowed rising phase of the
AP upstroke. In addition, theICa(L) driving force is also
increased because of reduced membrane potential. As can
be seen in Fig. 10, where the membrane potential is held
constant using the voltage clamp protocol, there is no in-
crease inICa(L) due to increased [Na1]i per se.

Possible arrhythmogenic consequences of
sodium overload

Sodium overload can arise as a result of a multitude of
disorders. Examples include conditions of metabolic com-
promise, digitalis toxicity, increased Na1 entry via the
Na1–H1 exchange as a result of intracellular acidosis,
increased Na1 entry due to persistentINa in the long QT
syndrome, LQT3, and rapid rates during episodes of tachy-
cardia and fibrillation.

Many of the AP changes observed in our simulations can
facilitate the induction and subsistence of reentrant arrhyth-
mias. For reentry to persist, the pathlength must be greater
than the wavelength (the product of APD and velocity of
propagation). If this condition is not maintained, the acti-
vation front will propagate into refractory tissue and the
activity will terminate. Elevated [Na1]i reduces the trans-
membrane Na1 gradient, resulting in decreased dV/dt (Fig.
8) and, thus, slowed conduction. Elevated [Na1]i also acts
to reduce APD, primarily due to increased reverse-mode
INaCaandINaK. These two conditions of Na1 overload favor
stabilization of reentry through reduction of the wavelength.

Another consequence of elevated [Na1]i is an accompa-
nying elevation of [Ca21]i. If Ca21 stores within the SR
become greatly overloaded, episodes of spontaneous release
will occur (Wier and Hess, 1984; Luo and Rudy, 1994b).
This release can activateINaCa to depolarize the cell and
trigger arrhythmogenic DADs (Zeng and Rudy, 1995; Luo
and Rudy, 1994b). Because DADs depolarize from rest
potential, the combination of short APD and elevated intra-
cellular Ca21 that exists during Na1 overload provides
highly favorable conditions for DAD development. The
DADs can provide the trigger (premature beat) for reentry
to a substrate that is highly susceptible to reentrant rhythms
as discussed above. It has been demonstrated that drugs that
inhibit [Na1]i and [Ca21]i overload are effective in the
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prevention of arrhythmias (for review, see Ravens and Him-
mel, 1999).

Sodium overload may also result in a lowering of intra-
cellular pH (acidosis) by reducing the rate of H1 removal
via the Na1–H1 exchange. Intracellular acidosis has been
shown to result in a reduction of the magnitude of the
L-type calcium current (Irisawa and Sato, 1986; Shaw and
Rudy, 1997) which would lead to APD shortening. Inter-
estingly, acidosis can also be a cause of Na1 overload,
especially following reperfusion of ischemic tissue. This
suggests a potential antiarrhythmic role for Na1–H1 ex-
change blockers (for review, see Karmazyn, 1996).

Limitations of the study

The simulations are conducted using measured global
intracellular values of [Na1]i and [Ca21]i and accurately
reproduce the experimentally observed behavior of the
[Ca21]i transient in response to pacing and [Na1]i loading.
Several studies have provided evidence for the existence of
subcellular spaces, which may have much higher concen-
trations of ions. The data necessary to accurately model
restricted spaces are either limited or unavailable, making
such an endeavor premature. With the development of higher-
resolution measurement techniques for imaging structure
and measuring local ionic concentrations, realistic modeling
of the intracellular organization and its effects on function
will become an achievable, important, and exciting goal.

Related to the above limitation is the method one uses to
calculateIrel (see Appendix). In the model,Irel is formulated
such that any source of Ca21 entry is equally capable of
triggering SR release. The close proximity of dihydropyri-
dine receptors and ryanodine receptors suggests thatICa(L) is
the dominant pathway of Ca21 entry responsible for trig-
gering Irel (Carl et al., 1995). It has been suggested that
other pathways of Ca21 entry (e.g.,INaCa) are much less
efficient in triggering release (Sipido et al., 1997). This may
be due to a long diffusion time of Ca21 from the sites of
entry to SR release sites or due to Ca21 influx that is much
smaller than that through the L-type Ca21 channels. In our
simulations, Ca21 entry via ICa(L) is the major source of
Ca21 that triggers SR release, even under conditions of
greatly elevated [Na1]i. However, under such conditions
INaCa contributes to CICR and can trigger release in the
absence ofICa(L). In the model, the lower efficiency ofINaCa,
compared toICa(L) in triggering SR release, is a conse-
quence of the smaller Ca21 flux through INaCa, not of the
spatial organization of the cell.

APPENDIX

Modeling [Na1]i-overload conditions with the LRd model
(Viswanathan et al., 1999; Zeng et al., 1995; Luo and Rudy, 1994a):
formulation of Irel, INaCa, andIK(Na).

Ca21 release from Junctional Sarcoplasmic
Reticulum to myoplasm, Irel

Irel 5 grel z RyRopenz RyRclosez ~@Ca21#JSR2 @Ca21#i!
grel 5 150/(11exp$@~ICa(L) 1 ICa,b1 Ip(Ca)

1ICa(T) 2 2 z INaCa! 1 5#/0.9%!
RyRopen 5 1/~1 1 exp~~ 2 t 1 4!/0.5!!

rate of opening of release channels
RyRclose 5 1 2 ~1/@1 1 exp~~ 2 t 1 4!/0.5!#!

rate of closing of release channels

The value fort is set to 0 at the time of dV/dtmax.

Na1–Ca21 exchanger, INaCa (based on Varghese
and Sell, 1997)

INaCa5 c1 z e~g21!VF/RT

z
eVF/RT z @Na1#i

3 z @Ca21#o 2 @Na1#o
3 z @Ca21#i

1 1 c2 z e~g21!VF/RT z SeVF/RT z @Na1#i
3 z @Ca21#o 1 @Na1#o

3 z @Ca21#iD ,

c1 5 0.00025, c2 5 0.0001, g 5 0.15

Na1-activated K1 current, IK(Na)

IK(Na) 5 g#K(Na) z PoNai z PoV z ~Em 2 EK!,
g#K(Na) 5 0.12848 mS/cm2

maximum membrane conductance of IK(Na)

PoV 5 0.82
0.65

~1 1 exp@~V 1 125!/15#!
voltage dependence (Sanguinetti, 1990)

PoNai 5
0.85

1 1 ~KD/@Na1#i!
n

@Na1]i dependence (Kameyama et al., 1984)
KD 5 66 mM, n 5 2.8

Other parameter values

I#up 5 0.00875 mM/ms maximum current throughIup

I#NaK 5 2.25mA/mF maximum current throughINaK
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